Irregular Labelings of Circulant Graphs

Marcin Anholcer

Poznań University of Economics

September 14, 2010, Zgorzelisko
1 Introduction
 • Notation
 • Irregularity Strength
 • Total Vertex Irregularity Strength
 • Circulant Graphs

2 New Results
 • Main Results
 • Technical lemmas
 • Sketch of the proofs

3 The End
Notation

- G - (connected) simple graph with no isolated edges and at most one isolated vertex
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
- $n = |V(G)|$
- $d_G(v)$ - the degree of vertex v in G
Notation

- \(G \) - (connected) simple graph with no isolated edges and at most one isolated vertex
- \(E(G) \) - the edge set of \(G \)
- \(V(G) \) - the vertex set of \(G \)
- \(n = |V(G)| \)
- \(d_G(v) \) - the degree of vertex \(v \) in \(G \)
Notation

- G - (connected) simple graph with no isolated edges and at most one isolated vertex
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
- $n = |V(G)|$
- $d_G(v)$ - the degree of vertex v in G
Notation

- G - (connected) simple graph with no isolated edges and at most one isolated vertex
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
- $n = |V(G)|$
- $d_G(v)$ - the degree of vertex v in G
Notation

- G - (connected) simple graph with no isolated edges and at most one isolated vertex
- $E(G)$ - the edge set of G
- $V(G)$ - the vertex set of G
- $n = |V(G)|$
- $d_G(v)$ - the degree of vertex v in G
Assign positive integer $w(e) \leq s$ to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the weighted degree is defined as:

$$wd(v) = \sum_{e \ni v} w(e).$$

- w is irregular if for $v \neq u$ we have $wd(v) \neq wd(u)$.

- *Irregularity strength* $s(G)$: the lowest s that allows some irregular labeling.
Assign positive integer $w(e) \leq s$ to every edge $e \in E(G)$.

- For every vertex $v \in V(G)$ the *weighted degree* is defined as:

$$wd(v) = \sum_{e \ni v} w(e).$$

- w is irregular if for $v \neq u$ we have $wd(v) \neq wd(u)$.

- *Irregularity strength* $s(G)$: the lowest s that allows some irregular labeling.
s(G): Definition

Assign positive integer \(w(e) \leq s \) to every edge \(e \in E(G) \).

- For every vertex \(v \in V(G) \) the *weighted degree* is defined as:

\[
wd(v) = \sum_{e \ni v} w(e).
\]

- \(w \) is irregular if for \(v \neq u \) we have \(wd(v) \neq wd(u) \).

- **Irregularity strength \(s(G) \):** the lowest \(s \) that allows some irregular labeling.
Assign positive integer \(w(e) \leq s \) to every edge \(e \in E(G) \).

- For every vertex \(v \in V(G) \) the *weighted degree* is defined as:

\[
wd(v) = \sum_{e \ni v} w(e).
\]

- \(w \) is irregular if for \(v \neq u \) we have \(wd(v) \neq wd(u) \).

- *Irregularity strength* \(s(G) \): the lowest \(s \) that allows some irregular labeling.

\(s(G) \): Some results

- Lower bound:

\[
s(G) \geq \max_{1 \leq i \leq \Delta} \frac{n_i + i - 1}{i}
\]

- Best upper bound (M. Kalkowski, M. Karoński, F. Pfender, 2009):

\[
s(G) \leq \left\lceil \frac{6n}{\delta} \right\rceil
\]

- Exact values for some families of graphs (e.g. cycles, grids, some kinds of trees).
\(s(G) \): Some results

- Lower bound:
 \[
 s(G) \geq \max_{1 \leq i \leq \Delta} \frac{n_i + i - 1}{i}
 \]

- Best upper bound (M. Kalkowski, M. Karoński, F. Pfender, 2009):
 \[
 s(G) \leq \left\lceil \frac{6n}{\delta} \right\rceil
 \]

- Exact values for some families of graphs (e.g. cycles, grids, some kinds of trees).
$s(G)$: Some results

- Lower bound:
 $$s(G) \geq \max_{1 \leq i \leq \Delta} \frac{n_i + i - 1}{i}$$

- Best upper bound (M. Kalkowski, M. Karoński, F. Pfender, 2009):
 $$s(G) \leq \left\lceil \frac{6n}{\delta} \right\rceil$$

- Exact values for some families of graphs (e.g. cycles, grids, some kinds of trees).
TVS(G): Definition

Assign positive integer \(w(e) \leq s \) to every edge \(e \in E(G) \) and every vertex \(v \in V(G) \).

- For every vertex \(v \in V(G) \) the *weighted degree* is defined as:
 \[
 wd(v) = w(v) + \sum_{e \ni v} w(e).
 \]

- \(w \) is irregular if for \(v \neq u \) we have \(wd(v) \neq wd(u) \).

- *Total vertex irregularity strength TVS(G):* the lowest \(s \) that allows some irregular labeling.
tv(s(G)): Definition

Assign positive integer $w(e) \leq s$ to every edge $e \in E(G)$ and every vertex $v \in V(G)$.

- For every vertex $v \in V(G)$ the *weighted degree* is defined as:

$$wd(v) = w(v) + \sum_{e \ni v} w(e).$$

- w is irregular if for $v \neq u$ we have $wd(v) \neq wd(u)$.

- *Total vertex irregularity strength tvs(G):* the lowest s that allows some irregular labeling.
Assign positive integer \(w(e) \leq s \) to every edge \(e \in E(G) \) and every
vertex \(v \in V(G) \).

- For every vertex \(v \in V(G) \) the \textit{weighted degree} is defined as:
 \[
 wd(v) = w(v) + \sum_{e \ni v} w(e).
 \]

- \(w \) is irregular if for \(v \neq u \) we have \(wd(v) \neq wd(u) \).

- \textit{Total vertex irregularity strength} \(tvs(G) \): the lowest \(s \) that allows some irregular labeling.
tvs(G): Definition

Assign positive integer \(w(e) \leq s \) to every edge \(e \in E(G) \) and every vertex \(v \in V(G) \).

- For every vertex \(v \in V(G) \) the *weighted degree* is defined as:

 \[
 wd(v) = w(v) + \sum_{e \ni v} w(e).
 \]

- \(w \) is irregular if for \(v \neq u \) we have \(wd(v) \neq wd(u) \).

- **Total vertex irregularity strength** \(tvs(G) \): the lowest \(s \) that allows some irregular labeling.

$tvs(G)$: Some results

- Lower bound:

$$tvs(G) \geq \left\lceil \frac{n + \delta(G)}{\Delta(G) + 1} \right\rceil$$

- Best upper bound (M. Anholcer, M. Kalkowski, J. Przybyło, 2009):

$$tvs(G) \leq \left\lceil \frac{3n}{\delta} \right\rceil + 1.$$

- Exact values for some families of graphs (e.g. cycles, prisms, some kinds of forests).
$tvs(G)$: Some results

- Lower bound:

$$tvs(G) \geq \left\lceil \frac{n + \delta(G)}{\Delta(G) + 1} \right\rceil$$

- Best upper bound (M. Anholcer, M. Kalkowski, J. Przybyło, 2009):

$$tvs(G) \leq \left\lceil \frac{3n}{\delta} \right\rceil + 1.$$

- Exact values for some families of graphs (e.g. cycles, prisms, some kinds of forests).
tvS(G): Some results

- Lower bound:

\[tvS(G) \geq \left\lceil \frac{n + \delta(G)}{\Delta(G)} + 1 \right\rceil \]

- Best upper bound (M. Anholcer, M. Kalkowski, J. Przybyło, 2009):

\[tvS(G) \leq \left\lceil \frac{3n}{\delta} \right\rceil + 1. \]

- Exact values for some families of graphs (e.g. cycles, prisms, some kinds of forests).
Circulant Graphs

Definition

Let n and s_1, s_2, \ldots, s_k be integers, with $1 < s_1 < \cdots < s_k \leq n/2$. The circulant graph $G = C_{i_{n}}(s_1, \ldots, s_k)$ of order n is a graph with vertex set $V(G) = \{0, 1, \ldots, n-1\}$ and edge set $E(G) = \{(x, x \pm s_i \mod n), x \in V(G), 1 \leq i \leq k\}$.
Circulant Graphs

Definition

Let n and s_1, s_2, \ldots, s_k be integers, with $1 < s_1 < \cdots < s_k \leq n/2$. The circulant graph $G = C_{i_n}(s_1, \ldots, s_k)$ of order n is a graph with vertex set $V(G) = \{0, 1, \ldots, n-1\}$ and edge set $E(G) = \{(x, x \pm s_i \mod n), x \in V(G), 1 \leq i \leq k\}$.

Theorem (J.-L. Baril, H. Kheddouci, O. Togni, 2005)

If $k = 2$ and $s_1 = 1$, then

$$s(C_{i_n}(1, s_2)) = \left\lceil \frac{n + 3}{4} \right\rceil.$$
Main Results

Theorem (MA, 2010)

If \(k \geq 2 \) and \(n \geq 2k + 1 \) then

\[\text{tv}(Ci_n(1, 2, \ldots, k)) = \left\lceil \frac{n + 2k}{2k + 1} \right\rceil. \]

Theorem (MA, 2010)

If \(k \geq 2 \) and \(n \geq 2k + 1 \) then

\[s(Ci_n(1, 2, \ldots, k)) = \begin{cases}
\left\lceil \frac{n + 2k - 1}{2k} \right\rceil + 1 & n = (4t + 2)k + 1, \ k \text{ odd or } t = 0, \\
\left\lceil \frac{n + 2k}{2k} \right\rceil - 1 & \text{otherwise.}
\end{cases} \]
Lemma 1

![Graph Diagram]

0 2 4 6 8
0 0 1 2 1 2 1
(l = 2) (l = 4) (l = 0) (l = 0) (l = 0)
Lemma 2

\[l = 0 \]

\[l = 2 \]

\[l = 4 \]
Lemma 3

```
2 3 4 1 0
1 1 1 0
1 1 1 -1
```

```
3 4 5 2 1
1 1 1 0
1 1 1 -1
```

Marcin Anholcer
Irregular Labelings of Circulant Graphs 12/18
Main Results

Remark

\[Ci_n(s_1, \ldots, s_k) = C_n^k \]

Theorem (MA, 2010)

If \(k \geq 2 \) and \(n \geq 2k + 1 \) then

\[tvs(Ci_n(1, 2, \ldots, k)) = \left\lceil \frac{n + 2k}{2k + 1} \right\rceil. \]

Theorem (MA, 2010)

If \(k \geq 2 \) and \(n \geq 2k + 1 \) then

\[s(Ci_n(1, 2, \ldots, k)) = \begin{cases}
\left\lceil \frac{n+2k-1}{n+2k-1} \right\rceil + 1 & n = (4t + 2)k + 1, \; k \text{ odd or } t = 0, \\
\text{otherwise.} & \end{cases} \]
Case 1: \(k \in \left\{ \frac{n-2}{2}, \frac{n-1}{2} \right\} \).

In such a situation \(Ci_n(1, 2, \ldots, k) = K_{2k} \) or \(Ci_n(1, 2, \ldots, k) = K_{2k+1} - M \) and we use special labeling.
Case 1: $k \in \left\{ \frac{n-2}{2}, \frac{n-1}{2} \right\}$.

In such a situation $Ci_n(1, 2, \ldots, k) = K_{2k}$ or $Ci_n(1, 2, \ldots, k) = K_{2k+1} - M$ and we use special labeling.
Case 2: \(k \leq \frac{n-3}{2} \) (equivalent to \(n \geq 2k + 3 \)).

Then \(n = t(4k + 2) + r \), where \(t \geq 0 \) and \(1 \leq r \leq 4k + 2 \).

Let \(s = \left\lceil \frac{n+2k}{2k+1} \right\rceil \) (Thm 1) or respectively \(s = \left\lceil \frac{n+2k-1}{2k} \right\rceil \) (Thm 2).
Case 2: \(k \leq \frac{n-3}{2} \) (equivalent to \(n \geq 2k + 3 \)).

Then \(n = t(4k + 2) + r \), where \(t \geq 0 \) and \(1 \leq r \leq 4k + 2 \).

Let \(s = \left\lceil \frac{n+2k}{2k+1} \right\rceil \) (Thm 1) or respectively \(s = \left\lceil \frac{n+2k-1}{2k} \right\rceil \) (Thm 2).
Case 2: $k \leq \frac{n-3}{2}$ (equivalent to $n \geq 2k + 3$).

Then $n = t(4k + 2) + r$, where $t \geq 0$ and $1 \leq r \leq 4k + 2$.

Let $s = \lceil \frac{n+2k}{2k+1} \rceil$ (Thm 1) or respectively $s = \lceil \frac{n+2k-1}{2k} \rceil$ (Thm 2).
Sketch of the proofs

\[
\begin{align*}
\text{(l=0)} & & \text{(l=0)} & & \text{(l=4)} & & \text{(l=4)} & & \text{(l=2)} & & \text{(l=0)} & & \text{(l=0)} & & \text{(l=0)} \\
0 & & 2 & & 4 & & 6 & & 8 & & 8 & & 6 & & 4 & & 2 & & 0 \\
(0) & & (0) & & (0) & & (1) & & (2) & & (4) & & (2) & & (2) & & (1) & & (0) \\
0 & & 2 & & 4 & & 6 & & 8 & & 8 & & 6 & & 4 & & 2 & & 0 \\
(0) & & (0) & & (0) & & (0) & & (0) & & (1) & & (0) & & (0) & & (0) & & (1) & & (2) \\
0 & & 2 & & 4 & & 6 & & 8 & & 8 & & 6 & & 4 & & 2 & & 0 \\
(0) & & (0) & & (0) & & (0) & & (0) & & (0) & & (1) & & (0) & & (0) & & (1) & & (2) & & (4) \\
\end{align*}
\]
Multiply edge labels by $\frac{s-1}{2}$, then add 1 and modify if s is even.

- Not more than $s - 1$ occurrences of every weighted degree.
- Weighted degrees differ by at least $s - 1$.
- In order to distinguish add vertex labels or reduce edge labels through factors F.

![Diagram of graph with labeled vertices and edges]
Sketch of the proofs

Multiply edge labels by $\frac{s-1}{2}$, then add 1 and modify if s is even.
- Not more than $s - 1$ occurrences of every weighted degree.
- Weighted degrees differ by at least $s - 1$.
- In order to distinguish add vertex labels or reduce edge labels through factors F.

![Diagram with labels and edges]
Sketch of the proofs

Multiply edge labels by $\frac{s-1}{2}$, then add 1 and modify if s is even.
- Not more than $s - 1$ occurrences of every weighted degree.
- Weighted degrees differ by at least $s - 1$.
- In order to distinguish add vertex labels or reduce edge labels through factors F.

![Graph Diagram]
Irregular Labelings of Circulant Graphs

Marcin Anholcer

Poznań University of Economics

September 14, 2010, Zgorzelisko